Purification and characterization of oxalyl-coenzyme A decarboxylase from Oxalobacter formigenes
نویسندگان
چکیده
منابع مشابه
Purification and characterization of formyl-coenzyme A transferase from Oxalobacter formigenes.
Formyl-coenzyme A (formyl-CoA) transferase was purified from Oxalobacter formigenes by high-pressure liquid chromatography with hydrophobic interaction chromatography and by DEAE anion-exchange chromatography. The enzyme was a single entity on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel permeation chromatography (Mr, 44,000). It had an isoelectric point of 4.7. The enzyme ...
متن کاملDNA sequencing and expression of the formyl coenzyme A transferase gene, frc, from Oxalobacter formigenes.
Oxalic acid, a highly toxic by-product of metabolism, is catabolized by a limited number of bacterial species utilizing an activation-decarboxylation reaction which yields formate and CO2. frc, the gene encoding formyl coenzyme A transferase, an enzyme which transfers a coenzyme A moiety to activate oxalic acid, was cloned from the bacterium Oxalobacter formigenes. DNA sequencing revealed a sin...
متن کاملAnabolic Incorporation of Oxalate by Oxalobacter formigenes.
Cell-free lysates of the strict anaerobe Oxalobacter formigenes contained the following enzymatic activities: oxalyl coenzyme A reductase, glyoxylate carboligase, tartronic semialdehyde reductase, and glycerate kinase. NAD(P)-linked formate dehydrogenase, serine-glyoxylate aminotransferase, and NAD(P) transhydrogenase activities were not detected. These results support the hypothesis that O. fo...
متن کاملGenome Sequence of Oxalobacter formigenes Strain OXCC13
The lack of Oxalobacter formigenes colonization in the human gut is generally acknowledged as a risk factor for kidney stone formation since this microorganism can play an important role in oxalate homeostasis. Here, we present the genome sequence of OXCC13, a human strain isolated from an individual residing in Germany.
متن کاملDifferential substrate specificity and kinetic behavior of Escherichia coli YfdW and Oxalobacter formigenes formyl coenzyme A transferase.
The yfdXWUVE operon appears to encode proteins that enhance the ability of Escherichia coli MG1655 to survive under acidic conditions. Although the molecular mechanisms underlying this phenotypic behavior remain to be elucidated, findings from structural genomic studies have shown that the structure of YfdW, the protein encoded by the yfdW gene, is homologous to that of the enzyme that mediates...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Bacteriology
سال: 1989
ISSN: 0021-9193,1098-5530
DOI: 10.1128/jb.171.5.2605-2608.1989